Сегодня 23 ноября 2024  |  03:34

USD 30.6034   |  EUR 40.0599

Наши услугиРеклама на портале

NovostiNauki.ru - поиск научных публикаций

Россия, Москва
г. Москва.




Напечатать


Выяснено магнитное упорядочение оранжевого кислорода

2010-11-10
16:13:00
Известно, что всего существует шесть фаз твердого кислорода. Они отличаются друг от друга строением кристаллической решетки, электрическими и магнитными свойствами, а также цветом. В одной из них, так называемой δ-, или оранжевой (названной так по характерному цвету), фазе, существующей в диапазоне давлений 6–8 ГПа и температур 20–240 К, не было ясности относительно магнитного упорядочения молекул твердого кислорода. Группа ученых из Франции, Швейцарии и США экспериментальным образом установила, что оранжевый кислород содержит три различных магнитных структуры, каждая из которых является антиферромагнитной.

В зависимости от поведения в магнитном поле почти все вещества условно можно разделить на четыре класса: диамагнетики, парамагнетики, ферромагнетики и антиферромагнетики. Количественной мерой такой классификации является безразмерный коэффициент — магнитная проницаемость, или отношение напряженности магнитного поля внутри материала к аналогичной величине вне его. Если магнитная проницаемость меньше единицы, то вещество считается диамагнетиком, если больше единицы, то парамагнетиком или антиферромагнетиком (о различии между ними будет сказано ниже), и наконец, когда магнитная проницаемость значительно больше 1, то такой материал именуют ферромагнетиком.

Такой разброс значений магнитной проницаемости объясняется внутренней структурой вещества, точнее — поведением внешних электронов его атомов. Из-за своего орбитального (вокруг ядра) и спинового (грубо говоря, вокруг своей оси) движения заряженные частицы, то есть электроны, генерируют микротоки. Это приводит к возникновению магнитного поля и, соответственно, магнитного момента атома, который можно интерпретировать в виде вектора. При включении внешнего магнитного поля магнитные векторы упорядочиваются — начинают «смотреть» в определенную сторону. В случае когда магнитные моменты атомов совпадают с направлением силовых линий внешнего поля, к его напряженности прибавляется, согласно принципу суперпозиции, суммарная напряженность поля, создаваемого упорядоченными атомами (эта ситуация характерна для парамагнетика). Если же моменты атомов приобретают направление, противоположное силовым линиям, то, согласно всё тому же принципу суперпозиции, знак плюс необходимо заменять знаком минус (в случае диамагнетика).

Для подавляющего большинства веществ значение магнитной проницаемости очень мало отличается от 1. Например, парамагнитная платина имеет магнитную проницаемость, равную 1,000265 — именно во столько раз усиливается внутри этого материала внешнее магнитное поле. Вода, являющаяся диамагнетиком, имеет магнитную проницаемость 0,999992, что означает ослабление поля в 1/0,999992 раз.

Что касается ферромагнетиков, то у них магнитные моменты атомов определенных областей материала или вообще всего его объема при температуре ниже температуры Кюри обладают выбранным направлением даже в отсутствие внешнего магнитного поля. При его включении магнитный порядок атомов лишь усиливается, что приводит к тому, что магнитная проницаемость принимает значения в сотни, тысячи, десятки тысяч, а то и больше, единиц (в зависимости от величины напряженности внешнего поля).

Так же устроено магнитное упорядочение и у антиферромагнетиков, только у них магнитные моменты ближайших соседних атомов направлены противоположно друг другу при условии, что температура вещества не превосходиттемпературы Нееля. И хотя магнитная проницаемость антиферромагнетиков, как и парамагнетиков, мало отличается от единицы (поскольку противоположная ориентация магнитных моментов почти полностью компенсирует создаваемое атомами магнитное поле), по типу магнитного упорядочения такие вещества выделяют в отдельное «семейство».

В каждом из упомянутых четырех классов веществ обязательно найдется материал, который выделяется выдающимися магнитными свойствами и, как результат, является объектом пристального внимания со стороны исследователей. Например, графит имеет наименьшее значение магнитной проницаемости (меньше может быть только у сверхпроводников — у них 0). В числе ферромагнетиков с наибольшей магнитной проницаемостей — мю-металл (приблизительно 50 000). Среди парамагнетиков особое место занимает кислород. Будучи газом, O2 представляет собой ничем не примечательный парамагнетик. Но как только он становится жидким (температура ожижения равна 90 К), его магнитная проницаемость вырастает более чем в тысячу раз, достигая рекордного для парамагнитных веществ значения.

Самое интересное начинается, когда кислород переходит в твердое агрегатное состояние (при температуре 54 К). Многочисленные эксперименты, проведенные с твердым O2 за последние годы, указывают на существование у него в интервале давлений от 0 до приблизительно 130 ГПа (1,3 млн атмосфер) по крайней мере шести фаз, отличающихся друг от друга кристаллической решеткой, магнитными, электрическими свойствами и даже цветом. Их обозначают греческими буквами γ, β, α, δ, ε и ζ. Некоторые фазы твердого кислорода называют еще по характерному цвету их модификации. Например, вместо δ-O2 иногда говорят «оранжевый кислород», «красным кислородом» называют ε-фазу.

Если продолжить уменьшение температуры, сохраняя при этом нормальное атмосферное давление, то при 54 К образуется не просто твердый кислород, а парамагнитный γ-кислород. Дальнейшее охлаждение до 44 К переводит γ-O2 в «почти» антиферромагнитную β-фазу. Наконец, при 24 К рождается полностью антиферромагнитный α-кислород.

Таким образом, описанная работа поставила жирную точку в довольно длительных дискуссиях об истинной магнитной природе δ-фазы твердого кислорода.



Вернуться к новостям компании




Вернуться к списку

Отправить другу эту ссылку:

Введите в это поле число, которое Вы видите на картинке справа:  

Премиум


На правах рекламы

 
Здесь находится аттестат нашего WM идентификатора 793631321040
Проверить аттестат
www.megastock.ru
Новое окно